Oxides

Oxides

Minimal Subsurface Oxidation

Studies show that dry hydrogen peroxide exhibits self-limiting behavior on Si, SiGe and TiN surfaces. Anhydrous hydrogen peroxide (HOOH) readily splits into OH radicals, ensuring a high concentration of -OH groups on the surface that serves as a large diffusion barrier. It is difficult for additional HOOH to penetrate this barrier. In contrast, HOH (water) splits into -H and -OH groups on the surface, resulting in low –OH population and a poor barrier for additional water to react.

Gap Fill

As devices shrink, transistors become smaller, making it difficult to physically and electrically isolate their structures. Aspect ratios can exceed 100:1 and structures can have a highly complex profiles. Void-free gap-fill in these structures is critical for better performance of advanced devices.

Gate Oxides

Smaller, more efficient devices require highly uniform nucleation, limited subsurface oxidation, and precise film thickness. Doped silicon channel materials are reaching their physical limits for carrier mobility.

Multiple Patterning

Self-Aligned Multiple Patterning technology has been widely implemented in advanced semiconductor manufacturing processes due to the late arrival of EUV technology. As devices shrink, it is a challenge to form a conformal spacer on small 3D & HAR features. Good uniformity and excellent conformality at >20:1 AR are critical for next generation SAMP process.

For multiple patterning applications that require low flows or single wafer applications:

High Volume ALD

The Internet of Things requires low power and high performance semiconductor devices which will only be enabled through new materials and 3D architectures. These new devices must be processed at lower temperatures and without attacking metal surfaces at high throughput. As processes scale, oxidants must also be able to support to high volume ALD challenges.

Low Temperature Oxides

Next generation devices contain highly sensitive metal alloys which cannot be exposed to high temperatures. Traditional water ALD is unreactive or too slow at moderate temperatures. Methods involving ozone or oxygen plasma are overly aggressive and damage the surface. A new oxidant is needed which shows good reactivity (GPC) and deposits high quality oxides without adverse effects.

RASIRC products generate and deliver water vapor, hydrogen peroxide and hydrazine gas in controlled, repeatable concentrations to critical processes.

Contact

info@rasirc.com
858.259.1220

7815 Silverton Avenue
San Diego, CA 92126
USA

Social Profiles

© Copyright 2023 RASIRC – All Rights Reserved – Privacy Statement