# **High Concentration Hydrogen Peroxide Gas Delivery System**

Safe, stable, consistent H,O, gas delivery

The Peroxidizer vaporizer provides a safe, reliable way to deliver high-concentration hydrogen peroxide gas into ALD, annealing, dry surface preparation, and cleaning processes.

#### **Peroxidizer Benefits**

- Safely concentrates H<sub>2</sub>O<sub>2</sub> from semiconductor grade 30% weight H<sub>2</sub>O<sub>2</sub>
- Flows H<sub>2</sub>O<sub>2</sub> gas to process at up to 50,000 ppm, depending on flow rate
- Delivers high purity H<sub>2</sub>O<sub>2</sub> without entrained droplets or decomposition
- Delivers low H<sub>2</sub>O to H<sub>2</sub>O<sub>2</sub> ratios

## **Benefits for Annealing and ALD**

- · Allows low temperature processing
- High oxide growth rates
- More reactive to metal-organic precursors
- · Useful for in situ surface pre-cleaning
- Enables high-density, uniform hydroxylated surfaces
- Reduces number of defects

# **Benefits for Surface Preparation** and Cleaning

- Delivers stable H<sub>2</sub>O<sub>2</sub> gas at a wide range of concentrations to remove films and residues
- Cleans in situ, requiring less chemical than wet cleaning
- Oxidizes organic hydrocarbons and metals, enabling their removal
- Removes carbon contamination without damaging the surface

# H,O, Delivery Challenges

H<sub>2</sub>O<sub>2</sub> presents a multitude of difficulties:

- Users wish to use standard twocomponent 30% weight H<sub>2</sub>O<sub>2</sub>
- · Low volatility
- Easily condenses in the gas stream to form droplets, which can lead to particles on wafer surfaces
- Decomposes to form water and oxygen at elevated temperatures, undermining the use of hot-plate vaporizers
- Generates particles when used with flash vaporizers

### **Overcoming Raoult's Law**

 $H_2O_2$  gas has not been used extensively in oxidation, surface preparation, and cleaning applications because of the obstacle described by Raoult's Law. When a two-component solution is vaporized, the individual components will do so at different rates. In the case of 30% weight  $H_2O_2$ , the  $H_2O$  component vaporizes significantly faster than  $H_2O_2$ .  $H_2O$  dominates the vapor stream, and the  $H_2O_2$  concentration is too low to be effective for the process.

Bubblers and traditional vaporizers do nothing to counteract the effect of Raoult's Law. If a carrier gas is bubbled through 30% weight  $H_2O_2$  solution, less than 300 ppm of  $H_2O_2$  will be delivered along with about 25,000 ppm of  $H_2O$ . For traditional vaporizers, high temperature operation leads to  $H_2O_2$  decomposition. Lack of temperature control leads to entrained droplets.

For both bubblers and traditional vaporizers, the differential vaporization rate causes

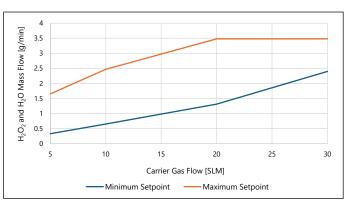
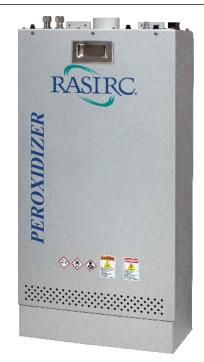
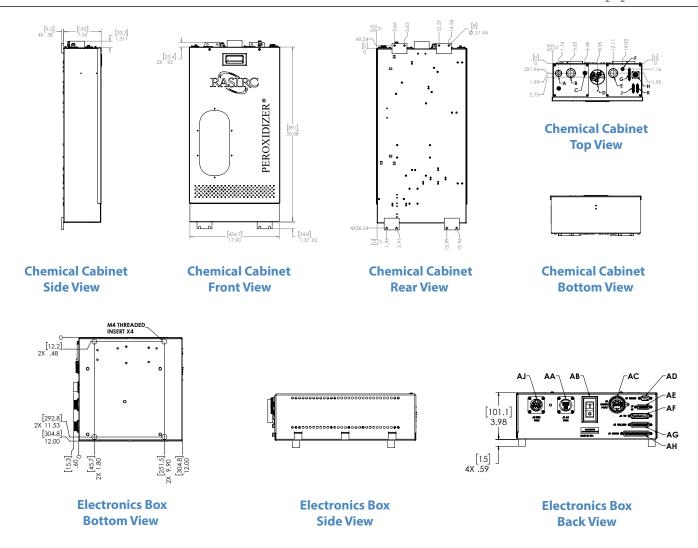




Figure 1 (left): H<sub>2</sub>O<sub>2</sub>/H<sub>2</sub>O mass flow setpoints for a range of carrier gas flow rates. Contact RASIRC if calibration is needed outside this range.




the liquid solution to concentrate and the composition of the process gas to constantly change. This prevents repeatable process control. Process recipes cannot be written around continuously changing mixtures.

The Peroxidizer vaporizer overcomes the issues of Raoult's Law by using a patented in situ liquid concentration method. Its unique vaporizer concentrates the liquid 30% weight  $H_2O_2$  solution to a stable and consistent level that allows up to 50,000 ppm of  $H_2O_2$  gas to flow to process along with  $H_2O$  at a ratio of four to one.

Table 1: Typical maximum H<sub>2</sub>O<sub>2</sub>/H<sub>2</sub>O mass flow output using 30%

| Carrier Gas<br>(SLM) | H <sub>2</sub> O <sub>2</sub> Vapor (ppm) | Total H <sub>2</sub> O <sub>2</sub> and<br>water mass flow<br>(g/min) |
|----------------------|-------------------------------------------|-----------------------------------------------------------------------|
| 5                    | 50,000                                    | 1.65                                                                  |
| 10                   | 40,000                                    | 2.47                                                                  |
| 20                   | 30,000                                    | 3.5                                                                   |
| 30                   | 20,000                                    | 3.5                                                                   |





**Table 2: Peroxidizer Facilities** 

| Description                                                 | Size/Type                 | Specification                                                                                                                                                                                                                                |
|-------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H <sub>2</sub> O <sub>2</sub> /H <sub>2</sub> O Process     | 1/4" male face seal, SS   | Can be configured for delivery into atmospheric or subatmospheric process pressures                                                                                                                                                          |
| H <sub>2</sub> O <sub>2</sub> /H <sub>2</sub> O Bypass Vent | 1/2" male compression, SS | Must be maintained at atmospheric pressure and connected to an abatement system                                                                                                                                                              |
| Carrier Gas Supply                                          | 1/4" male face seal, SS   | <ul> <li>Argon, Oxygen, Nitrogen, XCDA</li> <li>Purity: 99.999999%</li> <li>Filtration: 0.003µm</li> <li>Pressure: Min - 0.30MPa, Max - 0.85MPa</li> <li>Tempurature: 17-24 °C</li> <li>Mass flow controller included in the unit</li> </ul> |
| Pneumatic Gas Supply                                        | 1/4" Push-to-Connect      | <ul> <li>Argon, Nitrogen, XCDA</li> <li>Pressure: Min - 0.52MPa, Max - 0.59MPa</li> <li>Filtration: 0.1µm</li> </ul>                                                                                                                         |
| Cabinet Exhaust                                             | 3" duct adapter           | 30-50 cfm @ -0.13 to -0.16 inches $\rm H_2O$ , connected to an $\rm H_2O_2$ monitor                                                                                                                                                          |
| H <sub>2</sub> O <sub>2</sub> Liquid Source                 | N/A                       | <ul> <li>Manually filled (4L bottle inside of the unit)</li> <li>Semiconductor grade H<sub>2</sub>O<sub>2</sub></li> <li>Concentration: 30% ± 1 % (w/w)</li> </ul>                                                                           |
| AC Power                                                    | CPC Type XIII, Male       | 100-120VAC, 10 amps max                                                                                                                                                                                                                      |
| Environment                                                 | N/A                       | 17-24 °C                                                                                                                                                                                                                                     |

### About RASIRC

RASIRC products generate and deliver water vapor, hydrogen peroxide, and hydrazine gas to enable critical processes.

